Embedded Analytics

What is Embedded Analytics?

Embedded analytics software delivers real-time reporting, interactive data visualization and/or advanced analytics, including machine learning, directly into an enterprise business application. The data is managed by an analytics platform, and the visualizations and reports are placed directly within the application user interface (UI) to improve the context and usability of the data for business users.

What is Embedded Analytics used for?

Embedded analytics tools can be used in many different industries, allowing businesses to collect and analyze data for various purposes. The main usage of the embedded analytics is to provide that data and up-to-date business insights in the simplest way possible so that any user or application can use it and act on it.

When you integrate analytics into your business applications, you can achieve many benefits, such as:

What is the Difference Between Embedded Analytics
and Traditional BI?

In contrast to traditional BI, which requires users to leave their workflow applications to look at data insights in a separate set of tools, embedded analytics lets users view data visualizations or dashboards in context—while in the application itself. This immediacy makes embedded analytics much more intuitive and likely to be viewed by users.

In other words, when using traditional BI users are forced to switch between different apps to gain insights and take action, which results in frustration, waste time, and decreased efficiency. A December 2016 report from Nucleus Research found that using BI tools, which require toggling between applications, can take up as much as 1-2 hours of an employee’s time each week. Whereas, embedded analytics users use only one application, which saves time, increases productivity, and delivers better analytics experience.

Another difference between traditional BI and embedded analytics is that sometimes BI fails to deliver the intended value because it is not integrated with the user’s workflow. Due to that, it doesn’t give the context and the insights needed to act. On the other hand, embedded analytics helps the decision-making process by providing insights on a dashboard – users can use it to take immediate action and report at any time.

What is a Modern Embedded Analytics Platform?

Not all analytic products have been designed to be embedded. Many of today’s embedded analytics and BI vendors built their standalone applications first so they are not purposely designed to be embedded into applications.

Modern embedded analytics platforms don’t deliver a set of monolithic tools. Instead, they support a full stack of integrated analytic functions — from reporting and dashboards to self-service analytics, alerts, collaboration, data preparation and machine learning on a unified, scalable architecture with common administrative and management functions. And unlike more restricted analytics platforms of the past that limited what users could do, newer embedded platforms give end users the freedom to edit visualizations or dashboards or to create their own.

Also, they are designed from the ground up for the web, cloud and mobile delivery. Modern embedded analytics platforms also make it easier for developers to create custom analytic applications.

Benefits of embedded analytics in your software application

Embedded analytics tools offer many advantages to business. From seamless user experience and revenue growth to cultivating data-driven decision making, we gathered 3 fundamental benefits of using embedded analytics in your software application.

the benefits of embedded analytics software

Increased productivity

When using embedded analytics, users are looking at key business data in context, which removes the need of bouncing between multiple different apps to find the insights that they need. Therefore, when users don’t need to switch from business applications to analytics tools they can spend more time and focus on essential tasks. Plus, seeing data being represented in beautiful visualizations also drives perceptions.

Competitive advantage

One of the biggest benefits of embedded analytics is the competitive edge that it provides both software providers and end-users, including:

Seamless user experience

Users won’t waste time switching between apps, but instead focus on the value that the embedded analytics software provides. Having their answers and key insights right in front of them leads to increased productivity and increased customer satisfaction.

In our recent survey, we found out that one of the top motivators for developers to embrace embedded analytics is the increased customer satisfaction (36%), followed by the ability to make their app more visually appealing (23%), and gaining competitive advantage (22%).

Increased revenue

As per another research published in AnalyticsWeek, of the 500 project managers, software developers, engineers, and executives surveyed, 96% said that embedded analytics contributes to their overall revenue growth, and 92% reported an increase in competitive differentiation.

On top of that, embedded analytics tools can provide additional revenue streams. Thanks to its huge value for the business, some of the features and functionalities could become extra and your sales team could upsell them to new and already existing customers.

Cultivate data-driven decision making

Embedded analytics provide insights to users, but on the other side it also provides user insights to your team. Presenting accurate and up-to-date data enables analytical thinking that could ultimately drive to innovative ideas and improved products.

In-context analytics enables your users to make better, faster decisions that are based on the information available at that moment or visible on the specific screen they are viewing. When people can better understand the impact of their decisions, they tend to feel more confident in making decisions.

What are the Key Elements of Embedded Analytics?

These are some of the key functions that are included with embedded analytics software:

Dashboards

Dashboards are embedded analytics tools that visually display data patterns for analysis, presentation and easy understanding. Dashboards can consist of pie graphs or charts, bar or line graphs, scatter plots, color-coded maps, or any other kind of visual data presentations.

Key features include:

Drill-down takes a user from general overviews to more detailed analysis with a single click.

Reveal embedded analytics dashboard for manufacturing productivity.

Data Connectors

Modern embedded analytics software lets users connect seamlessly to many different data sources and then combine these data in one place for comprehensive analysis. Data sources may include Azure Synapse, Google BigQuery, Box, Sharepoint, Google Drive, One Drive, Microsoft Analysis Services, Microsoft SQL Server, CRM, and many more.

Some embedded analytics platforms also offer a feature called “in-memory data source”, which lets users directly connect to a data source that the software doesn’t support out of the box.

Visualizations

Visualizations refer to a range of chart types and the best embedded analytics solutions lets you choose from many pre-built templates. These range from column, doughnut, and funnel to bubble, scatter or sparkline charts, to more advanced ones such as tree map or geospatial mapping. Users can also combine these various visualizations to make a beautiful integrated dashboard.

Reveal embedded analytics visualizations types.

What are Embedded Analytics Statistical Functions?

Wikipedia defines statistics as the study of the collection, analysis, interpretation, presentation, and organization of data. In terms of data analytics, this can include key statistical functions such as outliers detection, time series forecasting and linear regression, as well as the ability to embed these interactions into visualizations or allow features such as dashboard drill-downs and dashboard linking.

Outliers Detection

Outliers Detection lets users easily detect points in their data that are anomalies and differ from much of a data set. They can show or hide these outliers from view, so they’re always showing or so they don’t interfere with an analysis.

Time Series Forecasting

Using Time Series Forecasting, users can make predictions on future values based on historical data and trends. This is useful in any number of applications, such as sales and revenue forecasting, inventory management, and many others.

Reveal embedded analytics time series forecasting for new vs renewal sales.

Linear Regression

Linear Regression lets users visually see trends in their data by finding the relationship between two variables and seeing a linear approximation of the data – including future trends. Along with Linear Regression, other algorithm trend lines include Linear Fit, Quadratic Fit, Cubic Fit, Quartic Fit, Logarithmic Fit, Exponential Fit, Power Law Fit, Simple Average, Exponential Average, Modified Average, Cumulative Average, and Weighted Average.

Embedded analytics – Build vs Buy  

Organizations that consider investing in embedded analytics software have two options: either to build their own data analytics platform or buy and embed an existing solution into their product. Depending on your business needs, resources, and budget there are pros and cons to both decisions.

Why build embedded analytics

Building your own embedded analytics solution might be the right option for those who could afford a higher budget and the human resource to do that. It gives you total control over the software, as well as it has more options for customization.

Also, building your own embedded analytics platform allows you to solve any security problems internally. This is important and might be a great bonus to those who are working with sensitive data that requires higher security levels.

pros and cons of buying vs building your own embedded analytics platform

Pros of building your own embedded analytics:

Cons of building your own embedded analytics:

Why buy embedded analytics

Most organizations decide to buy an already established embedded analytics solution to integrate with their existing software. One of the top reasons why this is the preferred option is that buying it instead of building it saves you both time and money. It also allows you to free up your developers’ resources and time so that they can focus on your core competency and what your business was initially designed for.

Pros of buying embedded analytics software:

Cons of buying embedded analytics software:

Depending on the solution provider, you may be limited to basic dashboards and reports, as well as have limited customization options.

Examples of Embedded Analytics

A recent 2019 survey report produced by Infragistics found that the most popular applications that development teams were either actively embedding analytics into or were planning to do so soon are shown in the graphic below:

Reveal embedded analytics report depicting top reasons why companies opt to embed

Some leading vertical sectors include:

Financial – Allows users at financial companies to aggregate vast volumes of data about borrowers for benchmarking and to better assess risk through intuitive visual dashboards that can be sliced, diced, and explored to granular levels.

Healthcare – Hospitals, doctors groups, and other healthcare groups use embedded analytics to Improve performance by delivering data-based quality care. They’ve been able to:

Manufacturing – A plant floor manager is responsible for a manufacturing plant’s entire production process, from when raw materials enter the plant to when the product exits the plant for distribution. The plant manager could use data analytics to see operational KPIs related to how the plant is performing, such as:

Social Media – Native metrics from social media platforms give you limited information, that is why most of these networks use embedded analytics to help them see their campaigns from a broader perspective. Emebedded analytics tools help them to predict campaign performance, suggest content recommendations, recommend best time for publishing based on time zones, offer various paid ads analytics, and more.

Your Facebook, for example, always knows what you have bought online and uses this data to up-sell related items each time you log in into the app.

Transportation & shipping – Allows transportation managers to track the path of an order: order fulfillment, shipping, and delivery tracking, and if there are any issues that require attention and action. Furthermore, transportation and shipping companies use embedded analytics for their business to increase the productivity of their workers and so that warehouse managers could keep track of key indicators such as average time or shipping and preparing the order.

Grocers – In the grocery industry, data analysis is key to discovering important insights related to sales, inventory, customers, and operations. When in place, the data analysis can forecast future sales and calculate efficient inventory policies to optimize stock levels. It can optimize pricing strategies and improve customer service.

As you can see, whether you produce and app or a service, and regardless of in which industry your business lies in, embedded analytics comes with tremendous opportunities to expand your business, add value for your customers, increase productivity, and of course, drive revenue. In today’s business era, embedded analytics is no longer ‘’nice to have’’, but a ‘’must have’’ solution.